
Storm Damage Reduction Benefits of Natural Infrastructure in the JC NERR

Storm Damage Reduction Benefits of Natural Infrastructure in the JC NERR

RED = JC NERR boundary
BLUE = Study Area Boundary

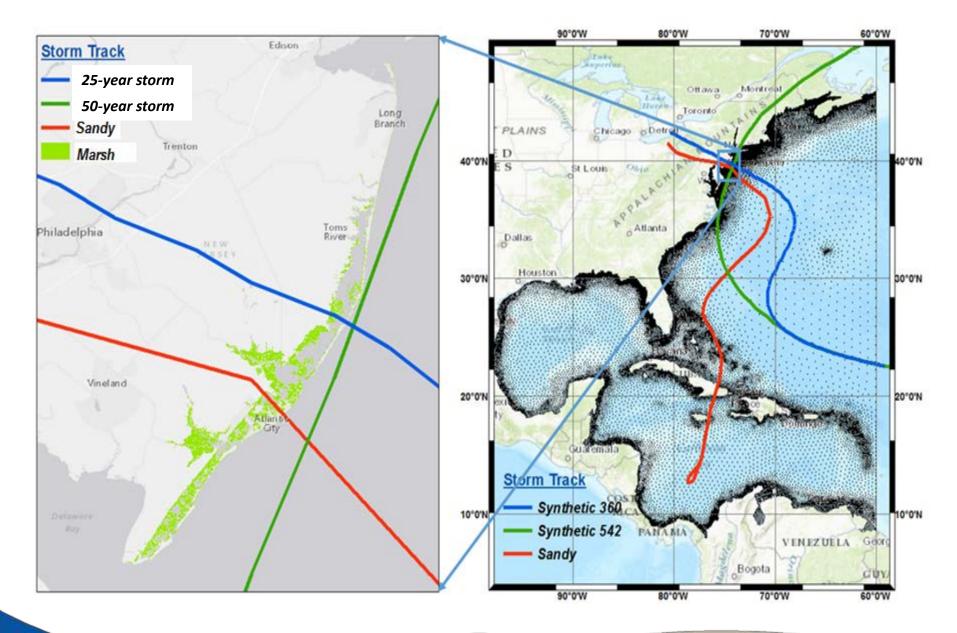
Project Overview

- Ecosystem service valuation
- Site selection process
- Stakeholder engagement
- Inundation modeling and property damage estimation under baseline conditions
- Inundation modeling and property damage estimation under year 2050 conditions
- Storm damage reduction value of the marsh in a 25-yr, 50-yr, and Hurricane Sandy storm events
- Value of flood insurance premium savings attributed to open space preservation

Motivation

Why was this done?

- Increase knowledge and awareness of ecosystems and their contribution to human wellbeing
- Promote necessity of protecting ecosystems to provide benefits for future generations
- Gain support for restoration and for future projects that will help protect the ecosystem



Methodology - Scenario Selection

Sea level/marsh conditions	Storm Event	Marsh Scenario	
	Hurricane Sandy	Marsh present	
		Marsh absent (converted to open water)	
Current sea level/marsh	50-year storm	Marsh present	
conditions		Marsh absent (converted to open water)	
	25-year storm	Marsh present	
		Marsh absent (converted to open water)	
Year 2050 sea level/marsh conditions	Hurricane Sandy	Marsh present	
		Marsh absent (converted to open water)	
	50-year storm	Marsh present	
		Marsh absent (converted to open water)	
	25-year storm	Marsh present	
		Marsh absent (converted to open water)	

Methodology – Inundation Modeling

- Advanced Circulation Model (ADCIRC)
 - Outputs:
 - Water velocity
 - Water elevations
 - Water depth
- Simulating Waves Nearshore (SWAN)
 - Outputs:
 - Wave height
 - Period
 - Direction

Methodology – Inundation Modeling

- Sea Level Affecting Marshes Model (SLAMM)
 - Used to "predict" sea level and marsh coverage in the future

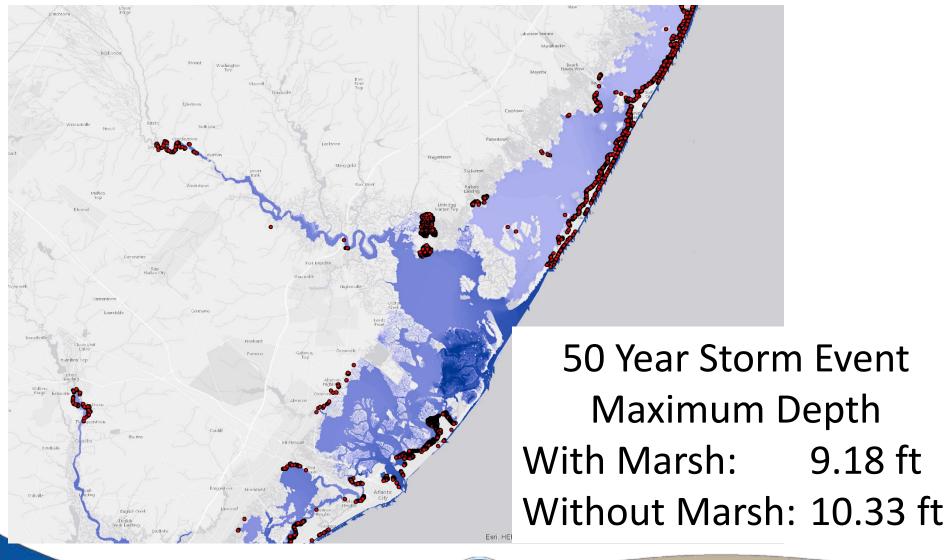
 ADCIRC and SWAN models are then both ran again in the "2050" environment

Methodology - Damages Avoided

- By combining outputs from:
 - The ADCIRC and SWAN models
 - New Jersey parcel data
 - US Army Corps of Engineers depth damage functions
- The storm damage reduction benefits provided by natural infrastructure in the JC NERR study area is calculated

Methodology - Community Rating System

- The Community Rating System (CRS) is a voluntary incentive program that recognizes and encourages community floodplain management activities that exceed the minimum NFIP requirements
 - Discounted flood insurance premium rates
- "Credit Points" are issued to communities that engage in these floodplain management activities


Methodology – Community Rating System

- One of the CRS activities is Open Space Preservation (OSP)
- The JC NERR is considered preserved open space
- The preservation of Open Space leads to NFIP discounts in CRS-participating communities
 - Saving money on flood insurance premiums =
 Additional discretionary income
- Marginal Propensity to Consume
- Economic Ratios and Multipliers

RESULTS



Results - Flood Depths

Results - Parcels Impacted

Damages Avoided Results

Current Baseline Conditions

				Percent	Per
	Residential	Residential	Damages	Reduction in	Acre
	Property	Property	Avoided	Damages Due	Value
	Damage ; 2015\$	Damage ; 2015\$	(Value of the	to Marsh	of the
Event	(Marsh Absent)	(Marsh Present)	Marsh)	Presence	marsh
Hurricane Sandy	\$2,331,067,963	\$2,322,731,031	\$8,336,932	-0.36%	\$136
50 Year Storm	\$107,972,822	\$94,888,388	\$13,084,434	-13.79%	\$213
25 Year Storm	\$91,894,099	\$82,062,657	\$9,831,442	-11.98%	\$160

Damages Avoided Results

Projected 2050 Conditions

				Percent	Per
	Residential	Residential	Damages	Reduction in	Acre
	Property	Property	Avoided	Damages Due	Value
	Damage ; 2015\$	Damage ; 2015\$	(Value of the	to Marsh	of the
Event	(Marsh Absent)	(Marsh Present)	Marsh)	Presence	marsh
Hurricane Sandy	\$2,594,648,892	\$2,562,559,835	\$32,089,057	-1.25%	\$557
50 Year Storm	\$349,122,514	\$329,190,819	\$19,931,695	-6.05%	\$346
25 Year Storm	\$126,980,226	\$125,436,468	\$1,543,758	-1.23%	\$27

Damages Avoided Results

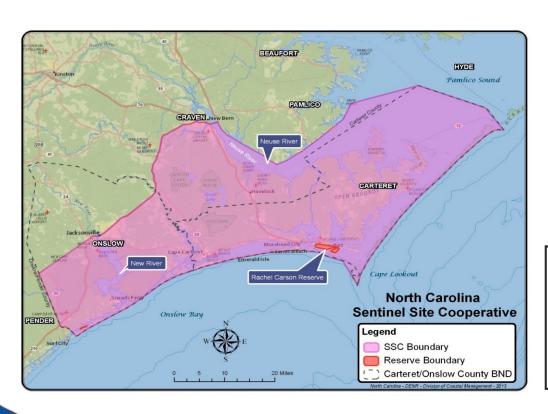
Statistical Analysis

	Effect of Marsh Presence		Effect of SLR and Marsh Migration		
	Current Conditions	2050 Conditions	Marsh Present	Marsh Absent	
Number of parcels inundated (25-year storm)	DECREASE (p<0.01)	N/A	INCREASE (p<0.01)	INCREASE (p<0.01)	
Number of parcels inundated (50-year storm)	DECREASE (p<0.01)	DECREASE (p<0.01)	INCREASE (p<0.01)	INCREASE (p<0.01)	
Number of parcels inundated (Hurricane Sandy storm)	N/A	DECREASE (p=0.05)	N/A	N/A	
Mean parcel inundation depth (25-year storm)	N/A	N/A			
Mean parcel inundation depth (50-year storm)	N/A	DECREASE (p<0.01)	INCREASE (p<0.01)	INCREASE (p<0.01)	
Mean parcel inundation depth (Hurricane Sandy storm)	DECREASE (p=0.01)	DECREASE (p<0.01)			
Mean proportional structural damage (25-year storm)	DECREASE (p<0.01)	N/A		N/A	
Mean proportional structural damage (50-year storm)	DECREASE (p=0.02)	DECREASE (p<0.01)	INCREASE (p<0.01)	INCREASE (p<0.01)	
Mean proportional structural damage (Hurricane Sandy storm)	N/A	DECREASE (p<0.01)	INCREASE (PROJUT)	INCREASE (p<0.01)	

Community Rating System Results

CRS Community	CRS class (2013)	Total CRS Discount for all NFIP policy holders (2015\$)	attributed to	expenditures due to OSP
Barnegat Light	8	\$102,296	\$42,415	\$29,633
Beach Haven	6	\$661,202	\$193,525	\$130,987
Brigantine	6	\$1,242,659	\$621,330	\$460,429
Margate City	6	\$1,215,503	\$355,762	\$244,395
Stafford	6	\$790,873	\$231,478	\$172,132
TOTAL			\$1,444,510	\$1,037,576

- \$1.4 million in flood insurance savings attributed to open space preservation
 - Leads to over \$1 million in additional direct expenditures in the community
- Output contribution = \$938,973
- Income contribution = \$451,500
- Employment contribution = 12 full time jobs



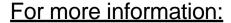
Summary of Results – The Takeaways

- Residential property damage is predicted to be GREATER with marsh absent when compared to marsh present for all storm events
- Residential property damage is predicted to be GREATER in 2050 when compared to current times for all storm events
- The CRS is a valuable tool for saving money on flood insurance premiums which induces economic stimulus

Next Steps

Continuation of research at the North Carolina Sentinel Site Cooperative

- Residential properties
- Critical infrastructure
 - Schools
 - Hospitals
- Roads



Thank you!

Project Partners

- NOAA NCCOS
- Jacques Cousteau National Estuarine Research Reserve
- National Estuarine Research Reserve System
- George Mason University
- Rutgers University

Matt.Gorstein@noaa.gov Jarrod.Loerzel@noaa.gov

Report Link:

https://repository.library.noaa.gov/view/noaa/16081

Project Webpage:

https://coastalscience.noaa.gov/project/economic-valuation-shoreline-protection-natural-infrastructure-coastal-community/

